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ABSTRACT  

The topics of succession and post-disturbance ecosystem recovery have a long and convoluted 

history. There is extensive redundancy within this body of theory, which has resulted in 

confusion, and the links among theories have not been adequately drawn. This review aims to 

distil the unique ideas from the array of theory related to ecosystem change in response to 

disturbance. This will help to reduce redundancy, and improve communication and 

understanding between researchers. We first outline the broad range of concepts that have 

developed over the past century to describe community change in response to disturbance. The 

body of work spans overlapping succession concepts presented by Clements in 1916, Egler in 

1954, and Connell and Slatyer in 1977. Other theories describing community change include 
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state and transition models, biological legacy theory, and the application of functional traits to 

predict responses to disturbance. Second, we identify areas of overlap of these theories, in 

addition to highlighting the conceptual and taxonomic limitations of each. In aligning each of 

these theories with one another, the limited scope and relative inflexibility of some theories 

becomes apparent, and redundancy becomes explicit. 

We identify a set of unique concepts to describe the range of mechanisms driving ecosystem 

responses to disturbance. We present a schematic model of our proposed synthesis which brings 

together the range of unique mechanisms that were identified in our review. The model describes 

five main mechanisms of transition away from a post-disturbance community: (1) pulse events 

with rapid state shifts; (2) stochastic community drift; (3) facilitation; (4) competition; and (5) 

the influence of the initial composition of a post-disturbance community. In addition, stabilising 

processes such as biological legacies, inhibition or continuing disturbance may prevent a 

transition between community types. Integrating these six mechanisms with the functional trait 

approach is likely to improve the predictive capacity of disturbance theory. 

Finally, we complement our discussion of theory with a case study which emphasises that many 

post-disturbance theories apply simultaneously to the same ecosystem. Using the well-studied 

mountain ash (Eucalyptus regnans) forests of south-eastern Australia, we illustrate phenomena 

that align with six of the theories described in our model of rationalised disturbance theory. We 

encourage further work to improve our schematic model, increase coverage of disturbance-

related theory, and to show how the model may link to, or integrate with, other domains of 

ecological theory. 
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I. INTRODUCTION 

It is important for ecologists and land managers to understand the influence of disturbance on 

ecosystems. This is because the encroachment of humans on natural ecosystems and climate 

change are altering disturbance regimes and placing increasing pressure on ecosystem services 

and biodiversity (Brennan, Christie & York, 2009;Eigenbrod et al., 2011). Land managers need 

to understand how ecosystems react to disturbances so that they can manage natural resources in 

an informed and effective way (Chesson, 1991;Hunter, 2007;Turnbull, Crawley & Rees, 2000).  

Disturbances such as fire, windstorms and floods can have major positive and negative impacts 

on both natural and human-modified ecosystems. In natural ecosystems, disturbances can alter 

the abundance and diversity of species, and influence nutrient and energy cycling, biomass 

accumulation, primary production, hydrological regimes and other key ecosystem processes 

(Sousa, 1984;Swanson et al., 2011). Some negative impacts of disturbance include direct 

mortality of animals and plants (Keith, McCaw & Whelan, 2002), as well as the destruction of 

resources and habitats (White & Pickett, 1985). However, disturbances often produce highly 

variable landscapes, which are essential for many species (Sousa, 1984). They also may increase 

biodiversity by creating new habitats and making new resources available (Connell, 

1978;Lindenmayer, 2009a).  

Numerous theories explore how ecosystems respond to disturbances, ranging from the classic 

Clementsian view of succession (Clements, 1916) to the more recently popularised biological 

legacy concept (Franklin et al., 2000). In this broad field of disturbance, many theories and ideas 

have been developed that are similar, have overlapping concepts, or have conflicting definitions. 

For example, the core mechanisms of Connell & Slatyer's (1977) tolerance model were 

previously well described as the fugitive species concept (Elton, 1927;Horn & Mac Arthur, 
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1972;Hutchinson, 1951). In both of these theories, good dispersers colonise first, growth of these 

early colonists makes the habitat less suitable for additional early colonist species, slowly 

dispersing, strong competitors can invade and outcompete the early colonists, and in the absence 

of further disturbance, the good dispersers are eliminated. The term “fugitive species” itself also 

has a range of synonyms including “opportunists” (MacArthur, 1960), “pioneering species” 

(Wynne-Edwards, 1962) and “ephemeral species” (Gilbert et al., 1976). Other examples of this 

redundancy of terms include: much overlap in invasive species hypotheses (see Catford, Jansson 

& Nilsson, 2009), the plethora of redundant terms that are used for ecological stability concepts 

(Grimm & Wissel, 1997) and many definitions for terms such as niche (McInerny & Etienne, 

2012). 

This kind of redundancy poses potential problems for scientists and land managers; it can make 

communication difficult and it fosters isolated areas of research where the same discoveries are 

repeated and communicated using different sets of words (Driscoll & Lindenmayer, 2012). For 

example, Connell & Slatyer (1977) suggested there was little support for the tolerance model of 

succession, when in fact substantial evidence existed in the fugitive species literature (e.g. Horn 

& Mac Arthur, 1972;Hurley, 1973;Hutchinson, 1951). Ultimately, such conceptual redundancy 

can impede scientific progress because research effort is divided into different silos (Austin, 

1999;Driscoll & Lindenmayer, 2012). There may be circumstances where interaction among 

conceptual silos leads to scientific advancement, such as when broader fields of biology interact 

(Cagnacci et al., 2010;Stockwell, Hendry & Kinnison, 2003). Nevertheless, it remains possible 

that such advances would happen faster if the silos had not been formed in the first place. 

We review theory on succession and disturbance, to identify overlap among, and differences 

between, these theories. A framework emerges from this review that provides a simplified set of 
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theories that can assist in improving and directing research, as well as facilitating communication 

about these topics. Our review has four main parts. Section II describes the broad range of 

theories that has been developed on succession and disturbance. Section III brings together these 

theories and discusses the overlap and differences between these ideas to pin down redundancy 

and identify unique phenomena. In Section IV we synthesise these unique phenomena into a 

simple conceptual framework that represents rationalised theory as advocated by Driscoll & 

Lindenmayer (2012). Rationalised theory arises from a synthetic review of the theory describing 

a set of phenomena, within a defined domain (Driscoll & Lindenmayer, 2012). Section V is a 

case study that provides a demonstrative example of many of the core ideas identified in the 

rationalised framework of disturbance-related theory. 

In this review, we use the term 'theory' in a broad sense, where a theory consists of a testable 

hypothesis, and the associated assumptions and concepts. We use the term disturbance to refer to 

“any relatively discrete event in time that disrupts ecosystem, community or population structure 

and changes resources, substrate availability, or the physical environment” (White & Pickett, 

1985, p. 7).  

 

II. SUCCESSION AND DISTURBANCE THEORIES 

For many years, ecologists have attempted to predict how ecosystems will change after 

disturbance. Many hypotheses have been proposed to predict or explain successional pathways 

and explain patterns of biological diversity. However, no one theory has been universally agreed 

upon. This is, in part, due to the complexity and variability of the ecosystems and disturbance 

events involved (Kayes, Anderson & Puettmann, 2010). Influential theories about vegetation 

succession include Clements’ (1916) early ideas on facilitation and climax states, the Initial 
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Floristic Composition model by Egler (1954) and Connell & Slatyer’s (1977) three hypotheses of 

Facilitation, Tolerance and Inhibition. These early theories need to be examined to build a 

thorough synthesis of disturbance-related concepts. More recently, successional theories have 

been applied to animals, building on the work done on plant succession, with the Habitat 

Accommodation Model being a prominent example (Fox, 1982). In this section, we discuss some 

of the more influential theories of succession and diversity.  

The literature related to disturbance is large. Therefore not all theories can be covered in this 

review, although we have examined the most important ones. For example, theories explaining 

patterns of species diversity such as niche models (Grinnell, 1924;Peterson, 2006;Soberón & 

Peterson, 2005), lottery models (Chesson, 1991;Sale, 1977;Turnbull et al., 2000), pattern 

diversity (Pielou, 1966) and patch dynamics (White & Pickett, 1985;Wu & Loucks, 1995) are 

less directly relevant to the topic of succession and post-disturbance ecosystems than the 

succession and other disturbance-related theories that we have addressed. 

In this review, we largely focus on post-disturbance succession. Succession is sometimes split 

into primary succession and secondary succession. Primary succession occurs in areas that are 

lacking previous life or soil structure such as newly emerged land, e.g. dunes or lava flows 

(Campbell, Reece & Meyers, 2006;Clements, 1916;Cutler, 2011). Extreme disturbance can 

initiate this kind of succession (Walker & del Moral, 2003). Disturbance often initiates 

secondary succession in which the soil is somewhat intact and frequently contains high numbers 

of germules from before disturbance (Campbell et al., 2006;Clements, 1916). 

Succession also can be classified as progressive or retrogressive. Progressive succession is a 

period of biomass increase while retrogressive succession is a possible subsequent period of 

biomass and soil loss, which can occur in a system that has not experienced a major disturbance 
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in a long time (Walker & Reddell, 2007). The concepts described herein apply equally well to 

both kinds of succession, because both describe ongoing community change in the absence of 

disturbance. 

 

(1) Early plant succession theories 

Literature on succession began perhaps with King (1685) and gained momentum in the 1800s 

(Hult, 1885 (article not seen in English, cited in Clements, 1916);Thoreau, 1860). In the early 

1900s researchers such as Clements (1916) and Cowles (1901;1911) published ideas that have 

continued to influence thinking on succession. Each of the early concepts of succession 

discussed below has played a large part over the last century in shaping the discussion on 

succession. We will later show how this early work reappears in different guises in more recent 

disturbance-related theory. 

 

(a) Clements  

Clements’ (1916) theories strongly shaped thinking on succession in the 20th century. He framed 

succession as occurring in a directional and predictable manner, commencing from a “bare state” 

and progressing from pioneer species to a “climax” or final stage. Clements (1916) saw 

succession as a series of invasions, starting with pioneer species, with each stage in turn being 

invaded by a “higher” form (Clements, 1916). Established species alter environmental conditions 

so that they are less favourable for themselves and potentially more favourable to species from 

the next stage. This occurs until conditions are most favourable to the current set of species and 

the climax stage is achieved (Clements, 1916, pp. 74, 80).  
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The idea of a climax or final equilibrium state was central to Clements’ (1916) ideas, but today 

ecologists generally disagree with this idea and view systems as dynamic, complex and non-

equilibrial in nature (Connell, 1978;Connell & Slatyer, 1977;McIntosh, 1999;Moore et al., 

2009;Sousa, 1984). Other problems with Clements’ (1916) ideas include his overly deterministic 

view that succession is entirely predictable and orderly and his heavy use of jargon, which makes 

his ideas inaccessible to modern readers (McIntosh, 1999). 

 

(b) Cowles and Gleason 

Cowles' (1901,1911) work preceded much of Clements (1916) writing on succession. His most 

influential comment on the subject was that succession is “a variable approaching a variable 

rather than a constant” (Cowles, 1901). This is a very different idea to Clements’ (1916) 

directional and deterministic views and suggests that succession is not a linear process with a 

defined end point, but rather a complex dynamic process that can even go “backwards” and is 

without a certain end point. Cowles' (1901) comment still resonates with some modern ecologists 

more so than Clements' deterministic ideas (eg. McIntosh, 1999;Prach & Walker, 2011;Sheil, 

1999). 

Gleason (1917,1927) was one of the early opponents of many of Clements’ (1916) ideas, 

advocating that succession phenomena were due to individual plants’ characteristics. However, 

Gleason’s (1917,1927) ideas were comparatively ignored. He disagreed with the idea of a climax 

state and instead believed that succession was “constant and universal” (Gleason, 1927), an idea 

that continues to influence modern thinking (McIntosh, 1999;Pickett, Cadenasso & Meiners, 

2009). By this comment, he meant that succession is a continuous process that has no end point. 
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He also thought that the first organisms to leave the system were those least tolerant to changing 

environmental conditions. 

 

(c) Egler – Relay Floristics and Initial Floristic Composition 

Conceptually, Relay Floristics is essentially deterministic changes from pioneer to climax 

species, but applied to abandoned agricultural land, or “old-fields”. In Relay Floristics, groups of 

species successively appear and disappear from a site (Fig. 1A). A group will enter the site at a 

specific stage and then make the conditions unsuitable for themselves and more suited for the 

next group to invade. This will continue until a stable climax stage is reached (Egler, 1954). 

Based on his work on “old-fields”, Egler (1954) also proposed the Initial Floristic Composition 

model, as an alternative to Clementsian succession. In his model, an area obtains various 

propagules until abandonment by human management, after which no further invasion by 

additional species takes place. All plant species and stages begin to develop from the start, with 

herbaceous species initially dominant because they are fast-growing. Each stage – herbaceous 

weeds, grassland, shrubland and finally forest – becomes predominant and then drops out in turn, 

until only trees dominate in an “equilibrium” state (Fig. 1B). The different stages drop out due to 

differential longevity, with each successive stage having a longer lifespan. Egler (1954) also 

alluded to the ability of a species to resist invasion, which is independent of the plant’s position 

in the succession, as being an important stabilising factor and varying according to species and 

abiotic factors. 

Further invasion may occur during this process through Relay Floristics and alter the 

successional pathway. Egler (1954) saw both Relay and Initial Floristics as ideal cases, and that 
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in reality, both would work in conjunction with each other and with other factors such as 

herbivory, disturbance, disease, pests and invasion of rhizomes. 

 

Fig. 1. Two contrasting vegetation successional pathways. (A) Relay floristics. Groups of 
species successively enter and leave the site. Species make the conditions 
unsuitable for themselves and more suitable for later species. (B) Initial floristics 
composition. All species are present from the beginning and each group drops out 
in turn until only trees dominate in an equilibrium state. Modified from Egler (1954, 
pp. 414 – 415). 

 

Researchers continue to test Egler’s models with mixed results. For example, Kayes et al. (2010) 

examined post-fire recovery of Douglas fir (Pseudotsuga menziesii) forests and found that 

succession followed the Initial Floristic Composition model. However, the majority of studies 

across a range of vegetation types and geographical areas have found mixed results between 

scales, stages and vegetation types with some aspects of their studies matching one or both of 

Egler’s models but others not (e.g. Copenheaver, 2008;McClain, Holl & Wood, 2011;Penman et 

al., 2011).  

 

(d) Fugitive species 

Hutchinson (1951) formalised the concept of fugitive species, noting that the degree of 

originality of this concept was "inconsiderable" (Elton, 1927). Species that are good dispersers 
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but poor competitors may survive in a landscape that is subject to disturbance by arriving, 

establishing and breeding in sites before good competitors arrive (Horn & Mac Arthur, 

1972;Questad & Foster, 2007). Increasing abundance of fugitive species makes it increasingly 

difficult for additional fugitive species to colonise (Horn & Mac Arthur, 1972). However, when 

slower-dispersing but strongly competing species arrive, the poor competitors are eliminated 

(Hutchinson, 1951). 

 

(e) Early animal succession  

While early studies of succession were dominated by work on plants, a number of ecologists 

studied animal succession. Shelford (1907;1911) examined succession in tiger beetles and pond 

fishes. Shelford (1907;1911) hypothesised that plant succession was a driver of animal 

succession, with changing vegetation bringing in, and driving out, different animal species. Other 

early work such as that by Adams (1908) examined succession in North American birds. 

Contrasting with Shelford (1907), Adams (1908), argued that both internal (biotic) and external 

(physical or environmental) factors were drivers of faunal succession. From the 1960s, studies of 

animal succession began to increase, particularly those examining aquatic environments (e.g. 

Dean & Connell, 1987;Fish & Hall, 1978;Smith, 1968).  

 

(2) Facilitation, Tolerance and Inhibition 

(a) Connell and Slatyer 

Connell & Slatyer (1977) developed three succession models: Facilitation, Tolerance and 

Inhibition. The Tolerance and Inhibition models assume that any species that arrives at a site has 
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the potential to colonise. In contrast, the Facilitation model assumes that only early successional 

species or “pioneers” are initially able to colonise. Connell & Slatyer (1977, p. 1132) viewed the 

three models as representing "the process by which a community recovers from a perturbation". 

In the Facilitation model (Connell & Slatyer, 1977) early pioneer species alter conditions so that 

they are less suitable to themselves and more suitable to later successional species, which then 

colonise. Put another way, early species facilitate the entry of later species (Fig. 2). Connell & 

Slatyer (1977) concluded that the Facilitation model was most likely to occur in some cases of 

primary succession and animal succession. 

In the Tolerance model (Connell & Slatyer, 1977), later species successfully establish themselves 

if they are more tolerant to low levels of resources and therefore outcompete preceding species. 

They do not need early-stage species to alter the conditions for them. Early colonisers make 

conditions less suitable for “early succession” species but do not affect “late succession” species 

(Fig. 2). 

In the Inhibition model (Connell & Slatyer, 1977), early colonising species inhibit the 

establishment and development of other individuals until they die or are damaged. Established 

species alter conditions so that they are less suitable for both early and late succession species 

(Fig. 2). Because short-lived species will have higher turnover than long-lived species, there are 

more opportunities for short-lived species to be replaced than for longer-lived species (Connell 

& Slatyer, 1977). As a consequence, inhibition theory predicts gradual sequential succession 

from short- to long-lived species. Connell & Slatyer (1977) concluded that for vegetation 

succession, the literature at that time showed more support for this model than for the Tolerance 

and Facilitation models. 
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Fig. 2. The processes of Connell & Slatyer’s (1977) three succession models: facilitation, 
tolerance and inhibition. Modified from Connell & Slatyer (1977). 

 

Numerous studies have found evidence that a range of mostly sessile organisms appear to 

support (or partially support) one or more of Connell & Slatyer’s (1977) models in ecosystems 

such as benthic communities, forest stands, and coral reefs (e.g. Bergeron, 2000;Copenheaver, 

2008;Dean & Hurd, 1980;Mullineaux et al., 2003). Many studies also acknowledge that one or 

more of these models may be acting at once and that they are not mutually exclusive (e.g. 

Connell & Slatyer, 1977;Dean & Hurd, 1980;Rogers, 1993). For example, Kim (1997) found that 

Facilitation Inhibition Tolerance 

Disturbance 

Early species modify the 
environment so it is less 

suitable for recruitment of 
“early  succession” species 
and more suitable for “late 

succession” species 

Only “early 
successional” 

species establish 

The growth of late succession 
species is facilitated by the 

environmental  modifications 
of the early succession 

species. In time, early species 
are eliminated 

This continues until the 
resident species no longer 
facilitates the invasion and 

growth of other species 

Further invasion and/or growth to maturity can only occur when a resident individual is damaged or killed, 
releasing space. Whether the species composition of this community continues to change depends upon 

the conditions existing at that site and on the characteristics of the species available as replacements 

Any species that arrive, that are able to survive there 
as adults, can establish themselves 

Early occupants modify the 
environment so that it is less 

suitable for recruitment of 
“early succession” species 

but this has little or no effect 
on “late succession” species 

Early occupants modify the 
environment so that it 

becomes less suitable for 
subsequent recruitment of 

both early and late 
succession species 

Juveniles of later succession 
species that invade or are 
already present grow to 

maturity despite continued 
presence of early  succession 

individuals. In time, early 
species are eliminated 

This sequence continues 
until no species exists that 
can invade and grow in the 

presence of the resident 

As long as individuals  of 
earlier colonists are 

undamaged and/or continue 
to regenerate vegetatively, 
they exclude or suppress 

subsequent colonists of any 
species 
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early colonising species of algae inhibited the colonisation of two other species but that this 

occurred only in the absence of limpets. When limpets were present, the colonising ephemeral 

algae were heavily grazed and therefore unable to fully inhibit the later successional algae.  

 

(b) Habitat Accommodation model 

Connell & Slatyer’s (1977) Facilitation and Tolerance models were adapted by Fox (1982) into 

the Habitat Facilitation, and Habitat Tolerance models, respectively (Fox, 1982;Fox, Taylor & 

Thompson, 2003) and resulted in the Habitat Accommodation model. The model states that post-

disturbance recovery of animal species is related to the vegetation assemblage (Fox, 1982). In the 

Habitat Accommodation model, an animal species will establish in an ecosystem when the 

vegetation structure and composition first meets their habitat requirements (the habitat 

facilitation part of the model). Species will then decline or be excluded when the vegetation 

structure and composition changes, and is therefore no longer suitable for them and/or better-

suited species outcompete them (the habitat tolerance part of the model) (Fox, 1982;Fox et al., 

2003) (see Fig. 3). In the Habitat Accommodation model, animals react to their physical 

environment but do not alter it (Fox, 1982).  
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Fig. 3. The habitat accommodation model: a diagrammatical representation. Animal 
species enter when the vegetation reaches their requirements and exit when the 
vegetation moves out of their requirement range. Source: Monamy & Fox (2000, p. 
581).  

 

There have been mixed results from studies testing the Habitat Accommodation model. In wet 

heath in eastern Australia, Fox et al. (2003) discovered an association between changes in habitat 

structure and the turnover of rodent species, as predicted by the Habitat Accommodation model. 

However, other studies have found that the Habitat Accommodation model is a poor predictor of 

the responses of some other taxa [e.g. reptile responses to fire in Australia (Lindenmayer et al., 

2008b;Nimmo et al., 2012;Smith, Bull & Driscoll, 2013)]. The Habitat Accommodation model 

was formulated from studies of small mammals and may be most applicable to this group. 
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(c) Intermediate Disturbance Hypothesis 

The Intermediate Disturbance Hypothesis predicts change in species richness in relation to rates 

of disturbance so that communities with intermediate levels of disturbance will support the 

greatest number of species (Connell, 1978;Grime, 1973). Variation in disturbance could occur in 

frequency, extent, intensity, duration or time since disturbance (Shea, Roxburgh & Rauschert, 

2004). At low levels of disturbance, the most competitive species come to dominate. At high 

levels of disturbance, only extremely resistant species or rapid colonisers will manage to reach 

maturity between disturbance events (Connell, 1978;Wilson, 2011). At intermediate levels of 

disturbance, more species may co-exist due to lower competition, varying rates of response to 

resource availability or a competition–colonisation trade-off (Fox, 2013;Shea et al., 2004). Of 

studies that examine this hypothesis, less than 20% have found support (Mackey & Currie, 

2001), and Fox (2013) suggested the hypothesis should be abandoned because of its narrow 

scope. 

 

(3) Resource and trait-based hypotheses 

Several authors have suggested that the gradients of resources or stresses in an ecosystem 

influence succession, and that these gradients interact with species' traits to determine 

community change (e.g. Drury & Nisbet, 1973;Grime, 1979;MacArthur & Wilson, 1967;Tilman, 

1985). These theories have slightly different foci or levels of complexity and a number of these 

theories are discussed below. All of these concepts relate to the categorisation of life-history 

traits, and more focused life-history trait approaches are discussed at the end of this sub-section 

(e.g. Noble & Slatyer, 1980;Whelan et al., 2002). 
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(a) Differential growth and differential survival – Drury and Nisbet 

Drury & Nisbet (1973) adapted Odum’s (1969) tabular model of succession that combines 

temporal succession of vegetation with spatial changes along environmental gradients. They 

considered that, in general, the succession of species was determined by “differential growth, 

differential survival (and perhaps differential colonising ability)” along environmental gradients 

(Drury & Nisbet, 1973, p. 362). For example, Monk (1983) studied old-field succession in the 

Georgia Piedmont, USA and found that the three factors suggested by Drury & Nisbet (1973) 

were important drivers of succession in that ecosystem. 

More recently, Pickett & McDonnell (1989) and Pickett et al. (2009) proposed that a similar 

general set of parameters to that suggested by Drury & Nisbet (1973) drive vegetation succession 

(vegetation dynamics). These parameters are differential site availability, differential species 

availability, and differential species performance. 

 

(b) r- and K-selection 

The concept of r- and K-selection suggests that there are two ends of the selection spectrum (r 

and K) that affects an organism’s ability to colonise and persist in an environment (MacArthur & 

Wilson, 1967). K is the “carrying capacity of the environment” and r is the “per capita rate of 

increase in a given unit of time” (MacArthur & Wilson, 1967). Commonly attributed 

characteristics of r-selected individuals include early maturity, short life cycle and many 

offspring. K-selected individuals typically take a long time to mature, have a long life cycle and 

produce few offspring. After a disturbance, colonising species are expected to have 

characteristics of r-selection and the traits of colonising species progress to K-selection as the 
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available resource levels stabilise and competition increases. The prominence of either r- or K-

selection will then be determined by the stability of resource levels in the environment 

(MacArthur & Wilson, 1967).  

The concept of r- and K-selection has been interpreted in a number of ways (see Parry, 1981), 

which makes the concept hard to assess empirically. Numerous authors have attempted to use 

this concept to examine life-history traits of organisms, but there has been a general move away 

from this concept due to many examples where the theory is not robust (Lankau & Strauss, 

2011). Alternative methods of categorising life-history traits are discussed below.  

 

(c) CSR theory 

Grime’s (1979;2001) theory of C-, S-, and R-selection suggests that there are three selection 

pressures on plants that result in three strategies or functional types: competitive (C), stress 

tolerant (S) and ruderal (R) (Fig. 4). After disturbance, succession proceeds from the bottom 

right hand corner of the diagram (maximum influence of disturbance) towards the C–S side of 

the triangle (Fig. 4). The pathway towards the C–S axis will be determined by the level of stress 

(e.g. productivity of the soil, shading etc.), which can change throughout the succession (Grime, 

1979). Despite the CSR theory generating a lot of discussion, it has only rarely been empirically 

tested in terrestrial ecosystems, most likely due to the difficulty in defining and testing some 

aspects and assumptions (e.g. it is challenging to define the intensity of competition) (Wilson & 

Lee, 2000). The CSR theory has been more thoroughly investigated in aquatic ecology, where it 

is often found to be too simplistic (e.g. Reynolds, 1998) and does not describe the suite of traits 

found in aquatic plants (e.g. Willby, Abernethy & Demars, 2000).  
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Fig. 4. Simplified version of the CSR triangle. Arrows indicate increasing importance for 
each factor (competition, stress and disturbance) and letters represent 
competitive (C), stress tolerant (S) and ruderal (R). Modified from Grime (1979). 

 

Wonkka et al. (2012) used the CSR theory to classify North American trees into life-history 

categories and analysed ice storm damage data to examine how this form of natural disturbance 

affected the different categories. They found that the CSR categories corresponded with the 

damage sustained. For example, the stress tolerant (S) species were the least damaged by the 

disturbance (Wonkka et al., 2012). 

Other models similar to the CSR concept have been proposed. One such model is the Logistic 

Simulation model (Whittaker & Goodman, 1979), which proposes three broad categories of a 

population’s carrying capacity according to the variation in environmental conditions. These 
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three patterns are: adversity selection (hostile environments), exploitation selection (variable and 

sporadically favourable environments), and saturation selection (competition in a favourable 

environment) (Whittaker & Goodman, 1979). This model is broadly applicable to both plants 

and animals. 

 

(d) Resource Ratio Hypothesis 

The Resource Ratio Hypothesis (Tilman, 1985) proposes that plant succession is driven by the 

amounts of limiting resources (soil nutrients, light and sometimes water) that are available and 

which may be altered by disturbances. Plant species are adapted to different quantities of these 

limiting plant resources and a change in availability of these resources will result in a change in 

community composition (Tilman, 1985). Prior to 1985, Tilman and other authors suggested 

broader resource ratio theories (e.g. MacArthur, 1972;Tilman, 1980;Tilman, 1982).  

 

(e) Life-history trait-based approaches 

In the past 30 years, a new approach to using life-history traits for predicting responses to 

disturbance has flourished. Rather than coarse classifications of taxa into a few simple groups 

that is encouraged by r- and K-selection and CSR concepts, approaches based on grouping 

species according to shared life-history traits have produced finer-scaled classifications and in 

some cases achieved substantial predictive success (Keith et al., 2007;Noble & Slatyer, 1980).  

One of the early and most influential examples of a trait-based approach was the “vital 

attributes” approach developed by Noble & Slatyer (1980). This approach uses the life-history 

traits or “vital attributes” of potentially dominant species to model vegetation dynamics after 

disturbance. This model has been used repeatedly to examine post-disturbance responses of 
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vegetation communities with much success (e.g. Bradstock & Kenny, 2003;Keith et al., 

2007;Pausas, 1999). For example, Keith et al. (2007) used the plant functional types approach, 

which is based on vital attributes, to model vegetation dynamics in fire-prone wet heathland of 

south-eastern Australia. The approach provided good predictions of the average vegetation 

change over the 21-year period examined (Keith et al., 2007). 

Plant functional types are groups of plants that respond in a similar manner to conditions and 

disturbances, and affect ecosystem processes in a similar way (Díaz Barradas et al., 1999;Gitay 

& Noble, 1997;Root, 1967). There has been a lot of research effort into developing plant 

functional types that assist with land management and monitoring environmental change 

(Lavorel et al., 2007). Despite a large amount of work directed towards developing a single 

comprehensive classification system of plant functional types, this goal remains elusive (Lavorel 

et al., 2007;McIntyre et al., 1999). The disconnect between traits that determine ecosystem 

function and the traits that determine responses to environmental factors is a major challenge for 

this area of research (Lavorel et al., 2007). Another challenge is the vast array of definitions for 

the term “plant functional types” (Gitay & Noble, 1997).  

Another trait-based approach is the “critical life cycles” approach, which is applicable to both 

animals and plants (Whelan et al., 2002). The critical life cycles approach suggests that 

understanding the processes that result in patterns of response (e.g. to fire) should be combined 

with knowledge of the life cycle of an organism, as well as knowledge of local environmental 

factors such as climate, fire history and landscape characteristics. The possible processes that 

may affect animal fire responses that were suggested by Whelan et al. (2002) include direct 

mortality resulting from the fire, recolonisation, survival and establishment of individuals after 

fire, and post-fire reproduction and population growth. 
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Trait-based approaches have generally been used with less success for animals than for plants. 

For example, Langlands et al. (2011) adapted the concepts of “vital attributes” and “critical life 

cycles” (Noble & Slatyer, 1980;Whelan et al., 2002), as well as using functional understanding 

of spider traits to develop predictions of spider responses to fire in Western Australia. While they 

found significant associations between time since fire and a number of traits (e.g. body size), 

many of the traits explored did not conform to predictions and many others were important only 

briefly after a fire. There is much research that attempts to link traits with wildlife response to 

disturbances such as grazing (Hanspach et al., 2012;Silver & Vamosi, 2012), habitat loss 

(Davies, Margules & Lawrence, 2000;Driscoll & Weir, 2005) and fire (Lindenmayer et al., 

2008b;Moretti et al., 2009;Moretti & Legg, 2009;Smith et al., 2013). Nevertheless, universally 

applicable and general patterns linking traits to disturbance response have not yet emerged, and 

the predictive value generally remains low. While some studies have made progress in this 

direction (e.g. Latzel et al., 2011), perhaps the way ecologists go about examining this issue 

needs a shift in approach. One suggestion is to move away from pairwise analysis and instead 

examine the problem by focussing on four themes: traits, environmental gradients, the interaction 

milieu (i.e. the background of biotic interactions in which the organism interacts) and 

performance currencies (e.g. energy intake) (McGill et al., 2006). 

 

(4) Stochastic effects 

A rather different approach to the theories discussed so far are stochastic succession models (e.g. 

Holyoak, Leibold & Holt, 2005;Horn, 1975;Hubbell, 2001;Van Hulst, 1979). Markovian chains 

are a stochastic statistical process where transitions between a finite number of states are 

determined by the state immediately previous and not by any factors further into the past (Horn, 
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1975;Kemeny & Snell, 1960, p. 207). Horn (1975) presents an example of a Markovian 

stochastic succession model examining cell by cell (tree-by-tree) replacement to calculate the 

probability that a tree will be replaced by one of its own species or by another species, as 

determined by the frequency of juveniles of each species. This allows the calculation of the 

number of trees from each species that should be present at a particular stage in succession 

(Horn, 1975).  

Baasch, Tischew & Bruelheide (2010) used Markovian models to estimate vegetation 

regeneration for more than 20 years from the beginning of the successional cycle in post-mine 

sites in Germany. Their proposed methods were relatively successful, with the vegetation 

composition observed more than two decades after a disturbance generally agreeing with the 

predictions of the models.  

A conceptually similar idea to stochastic succession models is neutral metacommunity theory. 

This idea suggests that all the trophically similar species and individuals in a number of local 

communities within a region are competitively equivalent (Hubbell, 2001). Consequently, 

changes in community composition occur through ecological drift; a result of stochasticity 

associated with births, deaths, immigration and emigration (Holyoak et al., 2005;Hubbell, 2001).  

 

(5) State and transition models 

The ideas of resilience and multiple stable states (Holling, 1973;May, 1977;Scheffer et al., 1993) 

opened the way for state and transition models as a new way of viewing and managing the 

effects of disturbance in natural and human-manipulated ecosystems (Westoby, Walker & Noy-

Meir, 1989). State and transition models assume there are a number of states in which a system 

can exist, but there are specific conditions that can drive the system between states (Phillips, 
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2011;Westoby et al., 1989). The transition rate can vary from gradual [e.g. overgrazing 

(Stringham, Krueger & Shaver, 2003)] to abrupt [e.g. frequent fire can cause a rapid change of 

dominant vegetation in a forest (Lindenmayer et al., 2011)]. State and transition models are 

developed using information from a combination of sources including expert knowledge, 

historical observations, monitoring, controlled experiments, and chronosequence analyses 

(Bestelmeyer, Goolsby & Archer, 2011). Transitions are driven by events such as natural 

disturbances (e.g. fire), human management actions (e.g. logging, heavy grazing) or a 

combination of both (Westoby et al., 1989). These models were originally developed for 

rangelands (e.g. Briske, Fuhlendorf & Smeins, 2005;Westoby et al., 1989), but have 

subsequently been used to investigate a wide variety of ecosystems (Letnic et al., 2004;Phillips, 

2011). Phillips (2011) identified three basic types of state and transition models: (1) sequential – 

linear (A→B→C) or cyclical (A→B→C→A); (2) radiation – one state can transition to or from 

a number of other states; and (3) maximum connectivity – where any state can transition to any 

other.  

State and transition models can be a good tool for examining natural systems by providing 

managers with better ways of understanding and communicating changes in the ecosystem 

(Breshears et al., 2002;Westoby et al., 1989). State and transition models also provide broad 

predictive capabilities to assess and estimate potential future changes, given certain management 

and environmental conditions. However, the predictive powers of state and transition models are 

relatively low and their ability to deal with uncertainty is limited (Bashari, Smith & Bosch, 

2008;Phillips, 2011). Additionally, state and transition models assume that there is a threshold 

relationship between states A and B, but this is not always true (Lindenmayer, Fischer & 

Cunningham, 2005). 
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(6) Biological legacies 

Very few disturbances result in complete removal of all life (Connell & Slatyer, 1977). The 

majority of post-disturbance ecosystems retain survivors and other biological legacies (Franklin 

et al., 2000;Platt & Connell, 2003;Swanson et al., 2011). The ecological and disturbance history 

of an area can be an important driver in post-disturbance recovery and biological legacies 

represent this history (Copenheaver, 2008;Drake, 1990;Lindenmayer et al., 2008a). 

Biological legacies are organisms, structural legacies and biologically generated spatial patterns 

that are left after a disturbance (Franklin et al., 2000). Biological legacies are sometimes also 

called residuals or survivors. Biological legacies include whole organisms, spores, seed banks 

and fungal hyphae. Structural legacies include dead trees, logs and, in marine environments, 

dead coral. They can provide other species with habitat, nutrients and shelter (Franklin & 

MacMahon, 2000). They can “lifeboat” individuals through a disturbance that they would 

otherwise not survive. For example, invertebrates can survive through fires by sheltering inside 

logs (Campbell & Tanton, 1981;Ulyshen et al., 2010). Biologically generated spatial patterns 

include changes in chemical, physical or biological components of the soil such as local 

acidification or nitrogen-fixing bacteria that influence a localised area of soil (Franklin et al., 

2000). 

While the concept of biological legacies was occasionally considered in some older successional 

papers, the idea has received significant consideration only in recent years (e.g. Franklin et al., 

2000;Ledger et al., 2006). For example, Griggs (1922) noted the importance of biological 

legacies or residuals. He reported rapid revegetation of the land almost solely by buried roots, 
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rather than by new seedlings after the land was buried in a thick blanket of ash from a volcanic 

eruption in Alaska (Griggs, 1922). 

Biological legacies can strongly influence the pathway and rate of ecosystem recovery (Franklin 

et al., 2000;Platt & Connell, 2003;Swanson et al., 2011). They can influence recruitment of 

colonists through ecosystem engineering or interspecific interactions, can maintain species 

diversity and structural complexity, and help to re-establish ecosystem functions (Franklin et al., 

2000;Ledger et al., 2006;Swanson et al., 2011). For example, Ledger et al. (2006) found that of 

the three aquatic invertebrates that they studied in post-disturbance streams, a mayfly (Serratella 

ignita) had no discernible effect on subsequent communities, while a snail (Radix peregra) 

greatly influenced the settlement of filter feeders by bulldozing the algal growth, and a 

freshwater shrimp (Gammarus pulex) affected the subsequent communities by reducing or 

excluding colonists. 

 

III.  RELATIONSHIPS BETWEEN THEORIES 

Many of the theories and concepts that we have discussed have overlapping or similar ideas, 

which we synthesise in Table 1 and Fig. 5. Table 1 identifies the overlaps and unique aspects of 

disturbance-related theory and suggests appropriate and inappropriate applications, helping to 

define the scope of each theory. It allows researchers to determine when to consider a theory in 

relation to empirical studies and identifies knowledge gaps for further research. Fig. 5 highlights 

the relationships and differences between the theories, and provides a quick overview. By 

highlighting overlap and redundancy, our syntheses in Table 1 and Fig. 5 provide the basis of our 

rationalisation of disturbance theory (see Section IV).
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Table 1. Compilation of a large body of post disturbance and succession theory that examines differences and similarities and 
suggests appropriate and inappropriate uses for each theory. The cells that have been left blank require further research before 
they can be filled in. 

Concept name Concept definition Unique aspects of the 
concept 

Alternative 
names or 

overlapping 
concepts 

Appropriate 
systems and 

taxa 

Inappropriate 
systems and 

taxa 

Limitations 

Facilitation 
(Clements, 1916; 
Connell & Slatyer, 
1977; Egler, 1954) 

Series of invasions from 
pioneer to late-
successional species. 
Established species 
make conditions 
unsuitable for 
themselves and more 
suitable for next 
species in the series 

Established species make 
conditions unsuitable for 
themselves and more 
suitable for later colonists 

Relay Floristics 
(Egler, 1954),  

Clementsian 
succession 
(Clements, 1916),  

Habitat 
Accommodation 
model (Fox, 1982) 

Primary and 
secondary 
succession, 
animal 
succession 
(Connell & 
Slatyer, 1977) 

  Assumes predictability 
and a return to the 
same sequence after 
a disturbance. Does 
not take into account 
possible abrupt 
transitions of states. 

Variable evidence 
supporting and 
rejecting 

  

Habitat 
Accommodation 
model 
(Fox, 1982) 

Animal succession is 
determined by 
vegetation succession. 
Species moves into 
and out of the system 
as vegetation 
community changes 

  

Vegetation succession 
drives fauna succession; 
competitive environment 
changes over time 

Developed from 
Facilitation and 
Tolerance models 
(Connell & 
Slatyer, 1977.  

Trait-based 
approaches 

 

Animals - small 
mammals in 
particular (Fox, 
1982) 

Plants, sessile 
organisms (Fox, 
1982) 

Not appropriate for all 
animal taxa 
(Lindenmayer et al., 
2008b) 

 Competition 
(Tolerance) 
Connell & Slatyer, 
1977) 

Species that are more 
tolerant of lower 
resources will 
outcompete 
established species 

Emphasises increasing 
intensity of competition 
with time since disturbance 
(similar to gradient 
approaches below) 

 Large overlap: 
Gleasonian 
succession 
(Gleason 1917, 
1927), 

Intermediate 
Disturbance 
Hypothesis 
(Connell, 1978), 

Resource Ratio 
Hypothesis 
(Tilman, 1985) , 

Fugitive species 
(Elton, 1927),  

Habitat 
Accommodation 
model (Fox, 1982) 

Variety of 
organisms and 
ecosystem types 
(needs refining) 

 

  

  Assumes predictability 
and a return to the 
same sequence after 
a disturbance. Does 
not take into account 
possible abrupt 
transitions of states. 

Variable evidence 
supporting and 
rejecting  
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Gradient 
hypotheses 

Intermediate 
disturbance 
hypothesis 
(Connell, 1978; 
Grime, 1973) 

Intermediate 
disturbance results in 
maximum diversity 

Intermediate disturbance 
results in maximum 
diversity 

CSR theory, 
Tolerance model 
(Connell & 
Slatyer, 1977) 
(explains low 
diversity at low 
disturbance 
levels) 

Tropical systems - 
e.g. coral reefs 
and rainforest 
trees (Connell, 
1978; Gunderson, 
2000; Knowlton, 
1992; Nyström & 
Folke, 2001) 

 

Does not apply to 
majority of taxa/ 
ecosystems 
(Mackey & 
Currie, 2001) 

Limited to predicting 
species richness, 
does not explain 
composition changes, 
inadequate focus on 
mechanisms (Fox, 
2013) 
  

Trait-based 
approaches 

Key traits determine 
species post-
disturbance response. 
Species-level, 
mechanistic approach 

Traits drive succession Vital attributes 
(Noble and 
Slatyer, 1980),  

Critical life cycle 
approach (Whelan 
et al., 2002) etc.  

Related to Habitat 
Accommodation 
Model (Fox, 1982)  

 Currently works to 
some extent for 
plants 

Taxa that display 
little trait 
differentiation or 
where little is 
known about 
traits 

Need to have 
thorough 
understanding of 
traits for the relevant 
taxa. 

Made challenging by 
interactions of traits 
with other 
environmental 
factors  

Inconsistent 
definitions (Gitay & 
Noble, 1997)  
  

Resource Ratio 
Hypothesis 
(Tilman, 1985) 

Gradients of resources 
determine succession 
in combination with 
species' traits 

Amounts of limiting 
resources (soil nutrients, 
light and sometimes water) 

Other gradient 
concepts 

Dominant species: 
plants, diatoms, 
aquatic 
ecosystems 
(Miller et al., 
2005; Sommer, 
1993; Titman, 
1976) 

 

Animals (Tilman, 
1985) 

Does not take into 
account some 
factors (e.g. 
differential 
colonisation abilities) 
for simplicity 
(Tilman, 1985) 

  

Gleasonian 
succession 

(Gleason, 1917, 
1927), Drury & 
Nisbet, (1973) 

. Gradients of stress 
determine succession 
in combination with 
species' traits 

“Differential growth, 
differential survival (and 
perhaps differential 
colonising ability)” drive 
succession 

 

Other gradient and 
trait concepts. 
Competition 
model (formally 
Tolerance) 
Connell & Slatyer, 
1977)  

Plants (Drury & 
Nisbet, 1973; 
Gleason, 1917, 
1927) 
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Fugitive  
species (Elton, 
1927; Horn & Mac 
Arthur, 1972; 
Hutchinson, 1951) 

Species with low 
tolerance to 
competition but good 
dispersal ability are the 
first to establish in 
recently disturbed sites 
and will be 
outcompeted by more 
tolerant, poorly 
dispersing species 
when the latter arrive 

 

Dispersal ability important 
factor in success of initial 
recruits 

Other gradient and 
trait concepts. 
Competition 
model (formally 
Tolerance) 

(Connell & 
Slatyer, 1977) 

   

CSR theory  
(Grime, 1979, 
2001) 

Gradients of resources 
and stress determine 
succession in 
combination with 
species' traits 

Three selection pressures 
applied to plants = three 
strategies or functional 
types: competitive (C), 
stress-tolerant (S) and 
ruderal (R) 

  

Other gradient and 
trait approaches, 

Intermediate 
Disturbance 
Hypothesis,  

r- and K-selection 
(MacArthur & 
Wilson, 1967), 

logistic simulation 
model (Whittaker 
& Goodman, 
1979) 

 

Plants  Difficult to test some 
aspects and 
assumptions (Wilson 
& Lee, 2000) 

r-and K selection 
(MacArthur & 
Wilson, 1967) 

Gradients of resources 
determine succession 
in combination with 
species' traits 

Two ends of selection 
spectrum (r and K) 
influence organisms’ 
reproductive strategy 

Other gradient 
concepts, 

CSR theory (Grime, 
1979, 2001),  

Trait approaches 

Has been used 
successfully for 
wide range: 
insects, 
mammals, and 
marine 
invertebrates 
including a recent 
study on bacteria 
(Freilich et al., 
2010) 

 

Depends on the 
definition used 
(see Parry, 
1981)  

 

Many different 
interpretations of this 
concept (Parry, 
1981) 

Inhibition  
(Connell & Slatyer, 
1977) 

Early species inhibit 
further colonisation 
until they die or are 
damaged 

Established species prevent 
other species from 
colonising  

Initial Floristics 
Composition 
(Egler, 1954) 

Sessile organisms, 
intertidal zones 
(Connell & 
Slatyer, 1977; 
Sousa, 1984) 

  Does not take into 
account possible 
abrupt transitions of 
states 
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Initial Floristics 
Composition 
(Egler, 1954) 

All species are present 
from the start. Fast-
growing species 
dominate first, and 
then drop out and 
slower growing 
species become 
dominant 

Different species are more 
dominant at different times 
in succession according to 
differential longevity 

Old-field 
succession,  

Biological legacy 
(Franklin et al., 2000) 

Plant succession in 
agricultural fields 
or ecosystems 
where biological 
legacies are the 
main source of 
species 
establishment 
after disturbance 

  

 Does not act in 
isolation 
(acknowledges that 
other factors would 
be affecting 
succession) 

 

Biological 
Legacies 
(Franklin et al., 
2000) 

Organisms, structural 
legacies and 
biologically generated 
spatial patterns impact 
the recovery of an 
ecosystem after a 
disturbance 

Importance of biotic and 
abiotic biological legacies 
in post-disturbance 
response 

  

Residuals (Griggs, 
1922), 

Initial Floristics 
Composition 
(Egler, 1954).  

Secondary 
succession 
(Franklin et al., 
2000) 

Primary 
succession 
(Franklin et al., 
2000) 

Not very predictive. 
Does not act in 

isolation 
(acknowledges that 
other factors would 
be affecting 
succession)  

State and 
transition 
(Westoby et al., 
1989) 

Ecosystems can exist in 
multiple states. 
Disturbances can 
cause transitions 
between these states. 
State transitions may 
be linear in a similar 
way to succession, 
radiating or 
multidirectional 
between multiple 
possible states.  

 

Resilience concepts. 
Ecosystem response to 

disturbance can be 
substantial and abrupt 
rather than continuous 

Trait-based 
approaches also 
predict 
multidirectional 
change in 
community 
composition 

Range-lands, coral 
reefs (Briske et 
al., 2005) 

Ecosystem level 
inference only - 
not suitable for 
single taxa 

Predictive capacity 
low (Phillips, 2011).  

Assumes rapid 
transition between 
states, but gradual 
transitions or 
continua may exist, 
as emphasised in 
succession theories 
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Stochastic 
(Horn, 1975; 
Lawton, 1987; Van 
Hulst, 1979) 

Stochastic models are often 
Markovian so that transitions 
between a finite number of 
states are determined by the 
current state’s characteristics 
and not by any factors further 
into the past.  

Only the current 
conditions 
influence the next 
state (Markovian 
models). 
Community 
composition drifts 
due to stochastic 
demographic and 
dispersal events 

Some similarities to 
state and 
transitions models 

Markovian models 
have been 
applied to tree 
species (Culver, 
1981; Horn, 1975)  

Neutral models can 
be used to 
examine many 
systems to look at 
changes in 
abundance and 
species richness 
(Rosindell et al., 
2012) 

 Markovian models are 
time-consuming to 
develop. Traditional 
data-collecting 
methods (e.g. relevé 
method) not easily 
convertible into 
suitable format for 
models (Baasch et 
al., 2010)  

Neutral models make 
simplifying 
assumptions, 
however these 
models allow a 
different method of 
examining a system 
(Rosindell et al., 
2012)   
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Fig. 5. The relationships between theories on disturbance and succession. Red boxes = key concepts; purple boxes = 
the theories that use these concepts; green boxes explain the similarities and differences between theories that have a 
similar  idea. Red arrows indicate descriptions that are unique to that theory and the equals signs indicate that the 
definition is true for all theories that link to the same red oval 

Clementsian 
(Clements, 1916) 

Relay Floristics 
(Egler, 1954) 

Tolerance 
(Connell & Slatyer, 1977) 

Gleasonian 
(Gleason, 1917, 1927) 

Inhibition 
(Connell & Slatyer, 1977) 

Initial Floristics Composition 
(Egler, 1954) 

Residuals 

Biological Legacies 
(Franklin et al.,  2000) 

State and transition models 
(Westoby et al., 1989) 

Facilitation 

Tolerance 

Inhibition 

Any species 
can colonise 

Initial Floristics 
Composition 

Trait-based 

Biological 
Legacies 

Gradients 

Stochastic 

Series of invasions from pioneer to late successional species. 
Established species make conditions unsuitable for themselves 

and more suitable for next in the series 

Species that are more tolerant of lower resources will outcompete 
established species 

First to leave the system are the least tolerant 

Early species inhibit the establishment and development of other 
individuals until they die or are damaged 

Just considers survivors 

Animal succession is dependent on vegetation succession. 
resources provided by vegetation alter competitive environment 

Key traits determine species post-  disturbance response 

Explores the potential states of a system and the possible transitions 
that may cause a change in state 

Stochastic process where transitions between a finite number of 
states are determined by the current states characteristics 

Only 
pioneer/early 
successional 
species can 

colonise 

State & transition 
models 

Markovian succession 
models (e.g Horn, 1975) 

Intermediate Disturbance 
Hypothesis (Connell , 1978; Grime 1973) 

Vital attributes, critical  
life cycles etc. 

Habitat Accommodation 
model (Fox, 1982) 

Three strategies: competitive (C), stress tolerant (S) & ruderal (R) 
Different species tolerant to different levels of resources 

(light and soil nutrients) 

 Intermediate disturbance delays competitive exclusion or 
allows coexistence 

Two ends of the selection spectrum (r and K) that affects an 
organism’s ability to colonise and persist in an environment 

Organisms, structural legacies and biologically generated spatial 
patterns impact the recovery of a site after a disturbance 

Drury & Nisbet (1973) 
r and K selection 
(MacArthur & Wilson, 1967) 

CSR theory 
(Grime, 1979: 2001) 

Resource Ratio Hypothesis 
(Tilman ,1985) 

Facilitation 
(Connell & Slatyer, 1977) 

All species present from start. Groups dominate then drop out in turn  

Differential growth, differential survival (and differential colonising ability) 
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 (1) Facilitation 

An obvious overlap is the concept of facilitation, also known as relay floristics or Clementsian 

succession (Clements, 1916;Connell & Slatyer, 1977;Egler, 1954). Each of these terms refers to 

essentially the same idea, i.e. that established species alter conditions so that they are less 

favourable for themselves and more suitable for the next group of species (Fig. 5). Like other 

succession models, facilitation describes gradual change, and does not accommodate the idea of 

punctuated changes (Table 1). 

 

(2) Tolerance 

Several theories discuss species’ tolerance as a driver of succession. In the Tolerance model of 

Connell & Slatyer (1977) the important concept is that the intensity of competition increases 

over time (Table 1). This is similar to Gleasonian succession where the first to leave the system 

is the least tolerant (i.e. the least competitive) species (Gleason, 1917), a similar mechanism is 

invoked by the Fugitive species concept (Elton, 1927;Hutchinson, 1951). It contrasts with the 

mechanism posed by the Habitat Accommodation model (Fox, 1982), where competition 

changes through time, but does not necessarily increase in intensity (Table 1). Habitat 

Accommodation is a combination of Facilitation and Tolerance (Fig. 5). The Intermediate 

Disturbance Hypothesis also could be framed using the tolerance concept. At low levels of 

disturbance, species most tolerant of strong competition remain. At high levels of disturbance, 

"tolerance" may be used with a different meaning: tolerance of an extreme abiotic environment 

rather than an extreme competitive environment. Gradient approaches [e.g. Resource Ratio 

Hypothesis (Tilman, 1985), CSR theory (Grime, 1979;Grime, 2001) and r- and K-selection 

(MacArthur, 1972)] use the concept of tolerance with this second meaning, which is potentially 
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confusing. A solution may be to reserve 'tolerance' for this second meaning, and use the term 

'competition' for the former situation (Connell & Slatyer’s (1977) “tolerance” model), where 

change is brought about by changes in the competitive regime (Table 1). 

 

(3) Traits and gradients  

 Each of the gradient concepts (e.g. Connell & Slatyer, 1977;Drury & Nisbet, 1973;Gleason, 

1917;Gleason, 1927;Grime, 1979;MacArthur & Wilson, 1967;Noble & Slatyer, 1980;Tilman, 

1985) emphasises different types of gradients and most include aspects of species' traits (Table 

1). For example, Connell & Slatyer’s (1977) tolerance model considers species establishment 

and survival according to their position on a gradient of tolerance to limited resources. By 

contrast, Tilman’s (1985) Resource Ratio hypothesis is very narrowly focused on the gradient of 

two major limiting resources for plants – nutrients and light [although other work included a 

wider range of resource gradients (e.g. Tilman, 1980)].  

The r- and K-selection concept (MacArthur & Wilson, 1967) and the CSR theory (Grime, 

1979;Grime, 2001) (like all gradient theories as noted above) also relate to life-history trait 

approaches. This is because it is an organism’s life-history traits that determine where it resides 

on these gradients. The main difference between these two theories is that r-and K-selection 

represents a two-dimensional axis that influences reproductive strategies, while the CSR model 

has three selection pressures (competition, disturbance and stress) instead of two and was 

developed only for plants. The Whittaker and Goodman (1979) model provides three similar, but 

broader, selection pressures to the CSR model. However, the Whittaker & Goodman (1979) 

model is not easily empirically tested. 



36 

 

The Intermediate Disturbance Hypothesis (Connell, 1978;Grime, 1973) can be mapped onto the 

C–R axis of the CSR model (Table 1). In the case of plants, at high levels of disturbance, only 

ruderal species will remain, whereas at low levels of disturbance, only highly competitive 

species will remain. At intermediate levels of disturbance, there would be a mixture of species 

types. However, unlike those successional models that consider the trajectory of community 

change following a disturbance [e.g. Initial Floristic Composition (Egler, 1954) and the three 

models outlined by Connell and Slatyer (1977)], the Intermediate Disturbance Hypothesis 

focuses on predicting species richness given a particular spatial or temporal sequence of 

interruptions to succession.  

 

(4) Inhibition and Initial Floristic Composition 

The Inhibition model (Connell & Slatyer, 1977) and Initial Floristic Composition theory (Egler, 

1954) are similar in two respects. The first is that succession progresses from short-lived species 

to long-lived species (Connell & Slatyer, 1977, p. 1123;Egler, 1954). The second is that Initial 

Floristic Composition theory also includes the idea that established species vary in their ability to 

resist invasion (limited inhibition) (Egler, 1954). Connell & Slatyer (1977) considered that both 

the Tolerance and the Inhibition model followed the Initial Floristic Composition model in that 

any arriving species can colonise. The main difference between the two theories is that in the 

Inhibition model, the first colonisers inhibit the establishment of other species until they die or 

are damaged. By contrast, in Initial Floristic Composition, all species are present from the 

beginning but different species vary in their dominance at different times in the succession 

according to their differential longevity (Table 1). The concept of Initial Floristic Composition 
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has mostly been applied to abandoned agricultural fields, but the full scope of its application is 

yet to be ascertained (Table 1). 

 

(5) Biological legacies 

Biological legacy theory has some similarities with the concept of Initial Floristic Composition 

(Egler, 1954) in that the entities that are there from the beginning influence the succession (see 

Fig. 5). The main difference between the two concepts is that Initial Floristic Composition 

predicts the specific sequence of vegetation change that will occur through time (Fig. 1B), 

whereas the biological legacies concept does not. Also, in Initial Floristic Composition, the 

components leave the system due to differential longevity, while the biological legacy concept 

does not propose an exit mechanism. The biological legacies concept also includes structural 

legacies and biologically generated spatial patterns whereas Egler’s (1954) model considers only 

live propagules. 

 

(6) State and transition models 

The state and transition concept provides a different approach to many of the earlier succession 

and disturbance ideas in that it describes situations where there is little change from specific 

ecosystem states in the absence of disturbance, multiple stable states are possible, and transitions 

between states can be abrupt (Abensperg-Traun et al., 1996;Westoby et al., 1989). "Climax" 

communities (Clements, 1916) are stable states, but the key differences from state and transition 

concepts are that, in the latter, there are multiple states, and that transition from State A to State 

B does not occur in the absence of a driving disturbance. State and transition models also can 
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allow for multiple directional changes of ecosystem succession in response to disturbance 

(Phillips, 2011) and are therefore more complex than linear succession concepts. Trait-based 

approaches allow similar flexibility in terms of multidirectional change (Table 1). 

 

 

(7) Summary: relationships between the theories 

Although much work on succession and post-disturbance ecosystem recovery has been 

conducted over the last century, there is no universal disturbance theory that covers all situations 

and concepts. Many of these different approaches and ideas overlap or use different terms for the 

same phenomena. To promote understanding of post-disturbance ecosystem recovery, it would 

be valuable to recognise overlap and redundancy, and attempt to develop a reduced set of terms 

that more simply defines the range of disturbance-related phenomena. In Section IV, we suggest 

a framework that describes the phenomena we have reviewed, while purging the redundancy 

identified in this section (Table 1). 

 

IV.  RATIONALISED DISTURBANCE THEORY 

As shown in Table 1 and Fig. 5, we have identified a range of unique concepts that should be 

included in a framework of rationalised disturbance theory. In Fig. 6 we have collated the range 

of mechanisms through which a community of organisms might transition to another, and we 

have included the range of ways that gradual change, punctuated change, or no change may 

occur. Fig. 6 draws together disparate disturbance-related theories into a single framework, 

showing relationships and interconnections between concepts. For example, three formerly 
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independently used concepts: Initial Floristic Composition, Biological Legacies and Inhibition 

are shown to be alternative mechanisms that arise from the biotic and abiotic composition of a 

community immediately after disturbance (or a change in disturbance regime). A clear example 

of redundancy is the substantial conceptual overlap of Connell & Slatyer’s (1977) Tolerance 

model with a range of other theories including Gleasonian succession (Gleason, 1917, 1927), the 

Intermediate Disturbance Hypothesis (Connell, 1978), the Resource Ratio Hypothesis (Tilman, 

1985), Fugitive species (Elton, 1927), the Habitat Accommodation model (Fox, 1982) and many 

gradient hypotheses (Drury & Nisbet, 1973). In Fig. 6 we remove this redundancy, simplifying 

the set of ecological jargon that ecologists need to consider, while spelling out the full suite of 

phenomena.  

We acknowledge that our approach to synthesis may not fully represent all of the nuances of the 

original suite of overlapping theories. Nevertheless, the framework can be adapted in future to 

restore important detail as evidence accumulates, or to expand subsections of Fig. 6, taking a 

nested, rather than redundant approach.  

Much trait-based research is undertaken without reference to succession theory or other 

mechanisms of community change after disturbance. While species traits can be effectively used 

to predict changes in community composition (Keith et al., 2007), Fig. 6 illustrates opportunities 

to identify and communicate better the mechanisms of species responses. By attempting to align 

the disturbance response of species with particular traits (or communities with particular trait 

combinations) with other mechanisms of community change like competition and initial 

composition, there is the potential to discover the circumstances in which some have predictive 

value, aiding the development of contingent theory (Driscoll & Lindenmayer, 2012). Linking 

functional groups of taxa with the range of successional pathways illustrated here is a substantial 

knowledge gap and Fig. 6 provides a framework to allow these concepts to be explored together. 
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The framework in Fig. 6 should assist future researchers in this field to frame their hypotheses, 

pose better questions and improve communication between scientists and land managers. We 

have not specifically discussed the spatial context of post-disturbance succession, although the 

spatial context can have an important bearing on succession and species richness (e.g. Arthaud et 

al., 2013;Cadotte, 2007;Östman, Kneitel & Chase, 2006). More work is required to fit the 

rationalised theory discussed herein into a spatial context. In particular, reconciliation with 

metacommunity concepts (Leibold et al., 2004) is needed. We noted that neutral metacommunity 

concepts could drive stochastic community formation (Section II.4). There also are conceptual 

links between patch-dynamic metacommunities (Leibold et al., 2004), competition-colonisation 

trade-offs (Turnbull, Rees & Crawley, 1999) and our proposed competition pathways 5 and 7 

(Fig. 6) that need to be expanded upon. 

We argue that the framework in Fig. 6 has broad heuristic value because it highlights the range 

of mechanisms and pathways of community change associated with disturbance. Recognising 

this range of possibilities helps researchers to avoid narrow thinking that can arise when the 

focus is on just a single theory. The framework can be used to help interpret results from primary 

case studies, where there are no grounds for assuming a particular mechanism or applying a 

single theory. The framework can subsequently be used to aid prediction in secondary case 

studies, where specific components of the model can be tested using a hypothetico-deductive 

interpretation (Driscoll & Lindenmayer, 2012). 
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Fig. 6. An integration of the phenomena described by ecological theory related to disturbance. A 

disturbance (an event, a series, or combination of events) disrupts community ‘B’. We use 
quotation marks to indicate that communities ‘A’ or ‘B’ may be, but are not necessarily, the 
same community at different points in the cycle [acknowledging Cowles’ (1901) observation that 
succession is like ‘a variable approaching a variable rather than a constant’]. A disturbance in 
community ‘B’ may lead to a temporary change followed by recovery, and may be influenced by 
the effects of biological legacies or inhibition (1). On the other hand, a disturbance could lead to 
establishment of community ‘A’ as state and transition theory suggests that a range of 
alternative states (different communities) is possible, although we illustrate just two states here 
for simplicity. Succession, neutral, biological legacy and state and transition theories indicate 
there are a number of possible pathways by which community ‘A’ may transform into 
community ‘B’ after the disturbance. State and transition models suggest there could be a rapid 
shift between states (2). Neutral theory implies there may be stochastic community drift (3). A 
range of succession theory suggests that community composition may change through 
facilitation (4) or competition (tolerance) (5). The competitive environment may change, leading 
to species turnover throughout the succession, as competition acts in combination with 
facilitation (6), or the competitive environment may increase leading to a community ‘B’ 
consisting of the most competitive species (7). Competitive interactions may be altered by 
disturbance, and the nature of the disturbance (timing, severity, extent, etc.) can influence the 
likelihood that species coexist, including for example, circumstances where an intermediate 
disturbance facilitates coexistence leading to increased species richness (intermediate 
disturbance hypothesis) (8). Community change may also depend on the initial composition of 
the community after disturbance (9). Inhibition (or other stabilising processes as emphasised by 
state and transition models) may maintain community ‘A’ (10). On the other hand, a new 
community ‘B’ may develop through differential longevity (initial floristics composition) (11), or 
stabilising processes may contribute to the composition of the new community, including 
effects of biological legacies (12), and inhibition (13). In such cases, other processes primarily 
drive community change (e.g. 1–8). The composition of community ‘A’ could potentially be 
predicted from knowledge of how species with particular traits respond to the disturbance (14). 
Species traits also likely determine which taxa follow particular pathways between ‘A’ and ‘B’ 
(15). Species traits can be classified in a broad range of ways, including by considering 
demographic attributes such as where a species occurs on an r – K spectrum or mechanistic 
approaches that relate disturbance types to traits likely to be affected by that disturbance. 
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V. CASE STUDY: MOUNTAIN ASH FORESTS IN THE CENTRAL HIGHLANDS OF 

VICTORIA, AUSTRALIA 

We present a case study (Fig. 7), which highlights that many of the phenomena discussed herein 

can occur conjointly or at different times throughout succession at a site (as demonstrated in Fig. 

6 and Table 1). The case study emphasises how the starting conditions and the severity (or type) 

of disturbance can strongly influence the post-disturbance pathway of an ecosystem. Our case 

study also highlights the narrow focus that many researchers use when examining post-

disturbance ecosystems in that they often consider only one or even no theoretical phenomena 

and do not consider the full spectrum of theoretical work that might be relevant (e.g. Buddle et 

al., 2006;Cobb, Langor & Spence, 2007;Duncan, 2006). These problems can limit effective 

communication among scientists and limit scientific progress. 

Our case study uses examples from research in mountain ash (Eucalyptus regnans F. Muell.) 

forests in the Central Highlands of Victoria, Australia. This forest ecosystem provides a useful 

case study for two main reasons. First, this ecosystem has been subject to long-term studies 

examining various aspects of forest ecology. Second, different parts of this ecosystem have 

experienced various levels and types of disturbance (Gill, 1981;Lindenmayer, 2009a). This long-

term research, coupled with the existence of disturbance gradients, provides a large body of 

knowledge on post-disturbance responses in this ecosystem. Other ecosystems could equally 

illustrate the application of a rationalised approach to disturbance theory, such as the well-

studied boreal forests of North America (e.g. see works such as Burton et al., 2003;Heinselman, 

1981;Johnson, 1996).  
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There are three main pathways of post-disturbance succession in the mountain ash forests (Fig. 

7), which, in turn, influence the age of the forests and fire intensity (Lindenmayer, 

2009a;Mackey et al., 2002). The three pathways illustrate five different disturbance concepts 

including biological legacies, initial floristic composition, and state transitions (Fig. 7).  

 

 

Fig. 7. Diagrammatical representation of the main post-disturbance pathways (1, 2 and 3 
as described in the text) and successional theories that have been observed in the 
mountain ash forests of Victoria, Australia. A, biological legacies: dead trees and 
logs; B, initial floristics composition: species present from the beginning and 
becoming dominant according to differential longevity; C, competition (tolerance): 
the more competitive species will outcompete others; D, state and transition 
model: D1 – forest transitions from a eucalypt forest to a myrtle-beech-dominated 
rainforest; D2 – forest transitions from a eucalypt forest to an acacia forest; E, 
habitat accommodation model: flame robin enters and then leaves the area as 
habitat changes; F, trait-based approaches: key traits such as dispersal ability 
(e.g. flight in beetles) can be used to predict species presence at different stages 
of succession. Note that only relevant aspects of each pathway are depicted.  
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(1)  Pathway 1: mature forest and large infrequent disturbance 

The main (and traditionally the only recognised) post-fire pathway in mountain ash forests is 

mature forest experiencing large, infrequent stand-replacing fires. This produces even-aged 

stands of the obligate-seeding overstorey tree mountain ash (Ashton, 1981). In old-growth and 

mature forest, fire promotes a large amount of seed fall from the canopy of mature trees leading 

to a flush of seedling growth (Lindenmayer, 2009a). The vegetation in the mountain ash forest, 

after an initial fireweed flush, has been observed to follow the Initial Floristic Composition 

model (with some facilitation occurring that allows new species to enter) for decades afterwards 

(see B in Fig. 7) (Ashton, 1981). Fire in mature forest also leaves many other biological legacies 

such as standing dead trees with hollows and large logs (Lindenmayer, 2009a;Lindenmayer & 

Franklin, 1997). These biological legacies play a very important role in the ecosystem response 

to the disturbance (see A in Fig. 7) (Lindenmayer, 2009a;Lindenmayer et al., 2012). The 

presence and abundance of these biological legacies such as logs and dead standing trees will 

determine the ability of certain species to survive the fire (Lindenmayer, 2009b). 

Animals also have been observed to follow post-disturbance theories in the mountain ash forests. 

Shortly after the 2009 fire, previously rare or absent flame robins (Petroica phoenicea) appeared 

in the forests. However, their numbers are expected to decline over time because the vegetation 

community will become densely structured instead of the open habitat that they prefer (Habitat 

Accommodation model: see E in Fig. 7) (Lindenmayer et al., 2010). Additionally, a pitfall trap 

study of beetles two years after the 2009 fires found that the majority of beetles in stands that 

were burnt were morphospecies with hind wings, while beetles in stands that were not burnt in 

that fire were predominantly wingless (trait-based approaches: see F in Fig. 7) (Pulsford, 2012). 
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As time passes since the major disturbance, the understorey of the mountain ash forest can also 

reveal successional processes at work. More shade-tolerant/competitive understorey species such 

as hazel pomaderris (Pomaderris aspera) and musk daisy bush (Olearia argophylla) have been 

recorded to outcompete the less-shade-tolerant/less-competitive dogwood (Cassinia aculeata) 

[Competition (Tolerance): see C in Fig. 7] (Ashton, 1981). 

In a similar mountain ash forest system in Tasmania, Jackson (1968) hypothesised that if the 

stand was not burnt for 400 years, it would transition into rainforest dominated by myrtle beech 

[Nothofagus cunninghamii (Hook.) Oerst.] (State and Transition model: see D1 in Fig. 7). 

However, in our central highlands study region, the occurrence of myrtle beech is limited by 

rainfall and topography, which means that not all stands of mountain ash will transition to 

myrtle-beech-dominated rainforest (Lindenmayer et al., 2000;Mackey et al., 2002). Stands that 

do transition to rainforest may continue to be dominated by myrtle beech (Cunningham, 1960). 

 

(2) Pathway 2: mature forest and low severity disturbance 

Fires are not always stand-replacing events in mountain ash forests. In response to low- or 

moderate-severity fire, some trees may survive, leading to multi-aged stands containing 

biological legacies such as large dead and living trees (see A in Fig. 7) (Ashton, 

1976;Lindenmayer, 2009a;McCarthy & Lindenmayer, 1998). Older trees are more likely to 

survive a moderate-severity fire than younger trees because old trees have thicker bark (Ashton, 

1981).  
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(3) Pathway 3: immature forest 

If a young stand of mountain ash forest (less than 25 years old) is burned, few biological legacies 

remain after the fire. Because the trees are below the age of sexual maturity, there will be limited 

regeneration and the mountain ash forest may abruptly transition to a different community that is 

typically dominated by Acacia species (State and Transition model: see D2 in Fig. 6) (Ashton, 

1981;Lindenmayer, 2009a;Lindenmayer et al., 2011;McCarthy, Malcolm Gill & Lindenmayer, 

1999). 

 

VI.  CONCLUSIONS 

(1) We have attempted to rationalise succession and post-disturbance ecosystem recovery theory. 

We hope that others will build on our approach, to identify links with other domains of 

rationalised theory and add components where the framework is incomplete.  

(2) In undertaking this review and synthesis, we have brought together a large body of theory 

into an easy-to-use format, which focuses on unique concepts and discards redundant terms and 

frameworks. We hope that this rationalised approach to disturbance theory will assist researchers 

in considering a broad range of theory in planning research, but still allow concentration on 

specific theories where these have proved important. We also trust that our representation of 

rationalised theory may be useful for rapid learning about key processes and pathways associated 

with community change after disturbance.  

(3) Despite more than 100 years of research and thinking on the topic of post-disturbance 

community change, there are still many knowledge gaps (Table 1). The limitations and 

appropriate uses of some of the theories are yet to be determined or require further investigation. 

Conversely, because of over 100 years of research and thinking on this topic, the field of ecology 
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has accumulated a vast array of overlapping and redundant theory, any of which could be used to 

help frame disturbance research. A rationalised approach to this body of theory cuts through the 

accumulated concepts, identifying key phenomena and the linkages between them. This provides 

a framework that can help to identify existing and previously unrecognised knowledge gaps, 

which we believe could help the field to move forward more efficiently. 
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